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Transport equations with smooth flows

@ Transport equation in phase space x = (x, v) € R?
{0: +v-Ve+ F(t,x) -V, } f(x,v,t) =0

> Smooth, reversible characteristic flow F" : (x,v) — (X, V)(t"*!) where

X'(t) = V(t) _ o
{V’(t) = F(t, X(t) with (X, V)(t") = (x, v)

@ Vlasov-Poisson : F = E = —V¢ with A¢ = [ fdv (in arbitrary units)
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Numerical methods for the Vlasov equation

. .j | {(a(t),vi(t) :i < N} —
°ol°, : ,\éé
S {fi(t) :i <N}

@ Particle-In-Cell (PIC) methods (Harlow 1955)
> physics : (Hockney and Eastwood, 1988), (Birdsall and Langdon, 1991), ...

> mathematical analysis : (Neunzert and Wick, 1979), (Cottet and Raviart,

1984), (Victory and Allen, 1991), (Cohen and Perthame, 2000), ...
@ Eulerian (grid-based) or hybrid methods

» Forward semi-Lagrangian (Denavit, 1972), (Sonnendriicker and Respaud,
2010), ...

» Backward semi-Lagrangian (Cheng-Knorr, 1976), (Sonnendriicker, Roche,
Bertrand and Ghizzo, 1998), ...

» Conservative flux based methods (Boris and Book, 1976), (Fijalkow, 1999),
(Filbet, Sonnendriicker, Bertrand, 2001), ...

> Energy conserving FD Method : (Filbet, Sonnendriicker 2003), ...
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The standard : particles with (smoothing) scale ¢

h : distance between particles

f(x,t") ~ f.(x Zwkcpgx—xk) {

¢ : scale of the particles

v . 5 h/.
L

@ Initialization : particles’ centers are either
» located on regular grid : x? := (ko, k1)h with k € Z¢
> (pseudo-) randomly distributed with uniform probability, h ~
» (pseudo-) randomly distributed with probability f° (no h, then)

> Set the weights as wy := [\, o) © & h9fO(x}) or wic = const ~ N;*
k

1/d

@ Transport : push the centers forward
x7T™ = F"(x})  where F" = characteristic flow

e.g., F"(x,v) = (x + Atv, v + AtE"(x)) for Vlasov-Poisson, explicit Euler.
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The hybrid : particles with remappings (Denavit, FSL)

distance between particles (xx = hk)
x) = wipp(x — x :
) Z een( 2 { scale of the particles

(1) Transport as above : push x ™ = F"(x),

fir(x) = B (x Z wion(x — xith)

(2) Remap with standard interpolation scheme : compute w;™ = Wk(?h"“)

Fml(x) = £ (x ZW on(x — xx)
Fro o7
I
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The (not so) new : particles with deformations

Each particle has a weight w/, center x! € R and d x d deformation matrix DJ

i (x) = > wion(D(x — x7)
k

v supp(pn(x — xx) = xx + h[—r, r]?

ele]

koh supp(n(DF(x — x}))) = xj + (Dg) " (h[—r. %)

y
t

X

> see previous methods by (Thomas Hou, 1990), (Bateson and Hewett, 1998),
(Cohen and Perthame, 2000), (Cottet, Koumoutsakos and Salihi, 2000), (Hewett,
2003), (Bergdorf, Koumoutsakos 2006) ... list not exhaustive !
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How to deform the particles along the flow
@ reversible flow F" = exact transport reads

on(x = xi) = on((F")7H(x) = x§)

o first order expansion with Jacobian matrices Jr(x) = (0;Fi(x));; -y

(F™)7H(x) = xf + Jem-a (7T (x = X7

> deform the particles with
n n n+1 n+1 Z+1 Fn( n)
(Ph(Dk (X - xk)) = Qah(Dk ( - Xy )) where Dn+1 Dan
k

and JP & (Jea(x7)) 71 = Jpm-1(x7 ™). In practice, use Finite Differences

(F0)i = h)H((F™)i(x + hey) = (F")i(x} — hey)) ~ 8;(F")i(x)

am

(I~

and a "conservative" inversion J := det(J}])
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[[lustration : mismatched thermal sheet-beam

@ 1D1V model of unbunched sheet-beam propagating in constant focusing
channel, phase advance g = 60° per lattice period (Lund, Friedman and

Bazouin, 2011)
@ Physical parameters ~ consistent with NDCX-I : 100 KeV K+ beam, tune
depression o /0o = 0.5 and mismatch parameter p1 = xp/x,* = 1.25

rms beam radius [cm]

Initial phase space density
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[[lustration :

$=0.00m

s=0.75m

mismatched thermal sheet-beam

s=150m

$=6.75m s=7.50m s=8.25m
s=13.50 m s=14.25m s=15.00m
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[[lustration : mismatched thermal sheet-beam

> unweigthed PIC with N, = 64 x 64 particles, Poisson solved on 128 cells
> (32 particles per cell) 600 time steps for 30 lattice periods

Initial phase space density

Final phase space density
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[[lustration : mismatched thermal sheet-beam

> Cubic Bspline particles initialized on 64 x 64 grid, Poisson solved on 128 cells
> (< 32 particles per cell) 7 remappings in 600 time steps, for 30 lattice periods

Initial phase space density Initial charge (x) density

X

Final phase space density Final charge (x) density
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[[lustration : mismatched thermal sheet-beam

> PIC (p = 1) vs LTP using Poisson solved on 128 cells and < 32 particles per cell

PIC: 128 cells, 32 particles per cell PIC: 128 cells, 32 particles per cell
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[[lustration : mismatched thermal sheet-beam
> PIC (p = 3) vs LTP using Poisson solved on 128 cells and < 32 particles per cell

PIC_p3: 128 cells, 32 particles per cell PIC_p3: 128 cells, 32 particles per cell
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Theoretical convergence result

Question : assuming smooth data f(t = 0) and flows F", do we have

max |)(x) — f(x,t")| = 0 for h—0 7?

@ For smoothed particles : yes with a "smoothing kernel" argument but
requires € ~ h* with & < 1 and moment condition for ¢ (Raviart, 1985)

@ For remapped particles : it seems so (but introduces numerical dissipation)

@ For deformed particles : yes, with no assumptions on ¢, and no remappings

FSL with B_3 particles LTP with B_2 particles
1 1
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0.01 0.01
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100 1000 10000 100000 100 1000 10000 100000
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lllustration : the PIC method with linear weighting

v L4 * /. —-1/2
. e N,

et o) = 6= x) ko)

Point particles Wkéxz deposit their charge as
Pl = Z wik@i(xg) = he / (xi,v)dv  with  £(x):= Z Wikpe (X — x})
k k

Here the particles ¢.(x, v) = e2¢(%)¢(%) have smoothing scale & = hc

= convergence requires h. ~ h®, hence N,/N. ~ NZ with g = =% > 1

(e
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Log plots of charge density : unweighted PIC vs LTP

ulw PIC_p1vs LTP, 64 cells, 16 ppc
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Clonclusion and open questions

@ New approach decouples the resolution of the transport equation (/N,) and
that of the Force field (N.)
mapsto noiseless method, simpler to use?

» M. CP, A. Friedman, S. Lund and D. Grote (in preparation)
» M. CP and S. Lund (in preparation)

@ Same scaling for the particles and their initialization /remapping grid
— efficient (high order) approximation schemes, adaptive grids (as with FSL)

@ New convergence analysis, more flexible than the traditional "smoothing
kernel" argument

» M. CP, Smooth particles methods without smoothing (in preparation)

Develop a dynamic (and local) criterion for remappings
Design efficient adaptive version
Implement higher order methods with polynomial deformations

>
>
>
> .
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